

$\mathbf{2}$			4.5 oe	3	M2 for $\frac{6}{4} \times 3$ oe or $\frac{3}{4} \times 6$	
Or M1 for $\frac{6}{4}, \frac{3}{2}$ or $\frac{3}{4}$ oe seen	Condone reciprocals, decimals, $6 \div 4$ etc but not $6: 4$ Withhold $\mathbf{M 1}$ if used in wrong context					

| $\mathbf{4}$ | (a) | | 15 | 3 | M1 for $\frac{18}{6}$ or $\frac{6}{18}$ |
| :--- | :--- | :--- | :--- | :---: | :--- | :--- |
| | (b) | 5.4 | | | SC1 for SF can be awarded here if
 (a) is not attempted and at least M1
 scored in (b) |

5	(a)	$\begin{aligned} & C=53 \mathrm{soi} \\ & Y=30 \text { soi } \end{aligned}$ Triangles contain same angles oe	$\begin{gathered} 1 \\ 1 \\ \text { 1Dep } \end{gathered}$	May be on diagram May be on diagram Dependent on 1 previous mark scored	Ignore extra statements
	(b)	7.45 to 7.5	3	M2 for $\frac{6}{8} \times 10$ oe Or M1 for $\frac{6}{8}$ or $\frac{8}{6}$ oe seen OR M2 for $\frac{6 \times \sin 97}{\sin 53}$ Or M1 for $\frac{x}{\sin 97}=\frac{6}{\sin 53}$ oe	Condone 1.3[3...] for $\frac{8}{6}$

6	(a)	($\frac{5}{2}, 2 \frac{1}{2}$ or 2.5 1				
		(ii)		eg regular octagon, square, semicircle, sphere etc		Not just 'octagon'	
		(iii)*	Correct proof well explained. (A) and $(B)=90^{\circ}$ or (AD) parallel ($B C$) stated These could be marked on diagram (ie 'boxes' or numbers, arrows).	3-2 $1-0$	Angles between tangent and radii $=90^{\circ}$ Therefore AD parallel to BC Therefore it is a trapezium For lower mark there will be any or all of - small use of poor mathematical language - conclusion unclear - both facts given in working/answer but no reason. Labels not necessary provided not contradictory For lower mark - nothing of any worth.		
	(b)	(i)*	Correct proof well explained. Any mention of ratio, division, factor, enlargement etc.	\|	c2	$\begin{aligned} & \hline \text { Eg } 12 / 8=1.5 \\ & 9 / 5=1.8 \text { or } 9 \mathrm{~cm} \mathrm{~s} \\ & \text { So triangles not sit } \end{aligned}$ For lower mark there - small use of poor - conclusion unclear - a reasonable arg of ratios or scale - one ratio may be For lower mark - noth	uld be 7.5 cm ar be any or all of mathematical language ment but without any calculation/use ctors correct of any worth.

7	(a)	17.1	3	M2 for $\frac{19.5}{6.5} \times 5.7$ Or M1 for $\frac{19.5}{6.5}$ soi by 3	
	(b)	52	1		
	(c)	459 nfww	2	For 2 marks condone answer in range 452 to 460 nfww M1 for $51 \times(\text { their } 3)^{2}$	If using $A=\pi r^{2}$ must be full and complete method to score M1

